The orogeny is named for Caledonia, the Latin name for Scotland. The term was first used in 1885 by Austrian geologist Eduard Suess for an episode of mountain building in northern Europe that predated the Devonianperiod. Geologists like Émile Haug and Hans Stille saw the Caledonian event as one of several episodic phases of mountain building that had occurred during Earth's history.[2] Current understanding has it that the Caledonian orogeny encompasses a number of tectonic phases that can laterally be diachronous, meaning that different parts of the mountain range formed at different times. The name "Caledonian" can therefore not be used for an absolute period of geological time, it applies only to a series of tectonically related events.
Laurentia first drifted westward away from Gondwana and then migrated northward. This led to the opening of the Iapetus Ocean between Laurentia, Baltica and Gondwana. Its initial opening phase was between the adjacent Laurentia and Baltica (to the West and East respectively) and caused the two to breakup c. 615 Ma[3] or 590 Ma.[4] Then the part between Laurentia and Gondwana (to the east), opened c. 550 Ma.[Note 4] Further spreading of the Iapetus Ocean also caused Laurentia and Baltica to move away from each other.
Baltica drifted northward, too. This involved the opening of the Tornquist Ocean which separated it from the northern margin of Gondwana to the south. The onset of Baltica rifting and the Tornquist Ocean opening are difficult to date due to insufficient palaeomagnetic data but must have occurred in similar times as those of Laurentia and the Iapetus Ocean.[4]
Either in the Late Precambrian or Early Ordovician,[Note 5] the Avaloniamicrocontinent[Note 6] started to drift northwestward from the northern margin of Gondwana (Amazonia and northwest Africa) close to the original position of Baltica which had been to its north. Its rifting involved the opening and spreading of the Rheic Ocean to its south, which separated it from Gondwana. This rifting and opening were coeval with and may be related to subduction onset in the Iapetus Ocean.[5] The drift of Avalonia was towards the positions where Baltica and Laurentia had been in the Ordovician; these continents were by then further north. It also involved the consumption of both the Iapetus Ocean and the Tornquist Ocean along its northern margin.
Avalonia's motion was related to slab pull created by the subduction of the Iapetus Ocean beneath the margin of Laurentia to its northwest and possibly also by ridge push created by the spreading of the Rheic Ocean. It migrated across the Iapetus Ocean orthogonally (at a right angle).[6] Its drift included an up to 55° counterclockwise rotation with respect to the subduction zone to its north, mainly in the 470–450 Ma timeframe.[7] It moved significantly faster than Baltica but slowed down to a rate comparable to that of the latter in the Late Ordovician when it got close to it.[8]
The main phases of the Caledonian orogeny resulted from the convergence of Baltica, Laurentia and Avalonia which led to the closure of the Iapetus Ocean.
Early orogenic phases
McKerrow et al. (2000) give a definition of the Caledonian orogeny which includes "all the Cambrian, Ordovician, Silurian and Devonian tectonic events associated with the development and closure of those parts of the Iapetus Ocean which were situated between Laurentia (to the NW) and Baltica and Avalonia (to the SE and east) ... and each tectonic event throughout this 200 million years can be considered as an orogenic phase." This includes tectonic events which were smaller, localised and predated the more well-known main phases of this orogeny.
In this definition, the Taconic and Acadian orogenies in what today is North America are included in the phases of the Caledonian orogeny.
Some early phases of deformation and metamorphism are recognised in the Scandinavian Caledonides. The first phase that is often included in the Caledonian orogeny is the Finnmarkian Orogeny, which was an early deformation event in Arctic (northern) Norway which preceded the Scandian phase (see below) in this area. Its onset has been dated at c. 500 Ma (Late Cambrian). It continued to c. 460 Ma and was reactivated in the Scandian phase at ~425–415 Ma.[9][10]
According to van Roermund and Brueckner (2004), there was a distinct orogenic event which was separate and slightly younger than that of the Finnmarkian one, which they dated at 455 Ma. They named it the Jämtlandian Orogeny. It involved the Seve Nappe Complex of the Swedish Caledonides in central Sweden, which is interpreted as the stretched outermost edge of Baltica. Contrary to the previous opinion that it had been subducted beneath an oceanic island arc, they propose that it involved a collision with a continental fragment.
The Shelveian Orogeny occurred particularly in the Shelve area in Shropshire, in eastern Wales and in the English Midlands in the Late Ordovician and was related to the Taconic orogeny. It formed the Shelve Anticline and Rytton Castle Syncline and was the most important tectonic event in the area between the Cambrian and Devonian. Folding was accompanied by late stage igneous intrusions. The event caused a major unconformity in Shropshire with considerable erosion before the deposition of sediments in the Llandovery Epoch of the Silurian (444–443 Ma). There was no break in sediments in the area until the end of the Early Devonian, which was caused by the Acadian Orogeny in the British Isles.[11] It was associated with dextral (right-lateral) strike-slip movement in the Pontesford-Linley fault system and folding in pre-Ashgill strata, uplift of the adjacent Towi Anticline and igneous activity.[7][12]
Main orogenic phases
The main orogenic events or phases of the Caledonian orogenic cycle were related to the final closure of the Iapetus Ocean. They were, in sequential order, the Grampian phase, the docking of Eastern Avalonia with Baltica, the Scandian phase and the Acadian phase. The latter involved: A) the docking of England and Wales (which were part of eastern Avalonia) with eastern and southern Ireland with Scotland and the rest of Ireland (which were part of Laurentia). B) the amalgamation of terranes of Western Avalonia with the eastern margin of the main landmass of Laurentia (see Acadian orogeny article for this orogeny).
During the final part of its northwestward migration, Avalonia converged with Baltica and Laurentia to its northeast and northwest respectively. After its amalgamation with Eastern Avalonia, Baltica converged with Laurentia in a westward direction. The combined convergence of this microcontinent and the two continents created continental collisions between them, the mentioned orogenic events and the closure of the Iapetus and Tornquist oceans.
Continental collisions started in the Mid Silurian and mountain building and ended in the Early Devonian (420–405 Ma).[13][14]
The Grampian orogeny involved collisions between two landmasses of Laurentia and an oceanic island arc in the Iapetus Ocean outboard the main margin of the Laurentia tectonic plate (the future North America). There two Laurentian landmasses were Scotland
and northern and western Ireland. The other parts of the British Isles (England and Wales and the rest of Ireland) were part of the Avalonia microcontinent.
Eastern and Western Avalonia
Two parts of Avalonia have been distinguished, a western and an eastern one. The term Western Avalonia refers to the westernmost part of the microcontinent which amalgamated the east coast of the main part of the Laurentiatectonic plate (what is now North America) to the west in the area of the northern Appalachians and the Maritimes. Eastern Avalonia refers to a) the part which amalgamated with Baltica, b) England a Wales and eastern and south-eastern Ireland which amalgamated with Scotland and the north and west of Ireland (which were part of Laurentia).[15]
Docking Eastern Avalonia with Baltica
The easternmost part of Eastern Avalonia amalgamated with Baltica through an oblique soft docking governed by dextralstrike-slipconvergence and shear, rather than through an orogen-causing hard continental collision. This is indicated by the absence of orogenic structures or high-pressure metamorphic rocks, which are either not present or buried. This event occurred close to the end of the Ordovician, 440 Ma.[16] It docked with the Baltica margins in southern Denmark, the south-western corner of the Baltic Sea and Poland. It came to comprise Silesia in Poland, northern Germany, the Netherlands,Belgium and part of north-eastern France (the Ardennes Mountains).
The Anglo-Brabant massif or London-Brabant Massif in central and southern England and in Belgium is a large basement massif.[Note 7] It is part of a magmatic belt which, starting from the Lake District, to the north of this massif, bears record of the subduction of part of the Tornquist Sea beneath Avalonia and its closure. The closure of the Rheic Ocean, which took place soon after, occurred through subduction along the southern margin of this massif.[17]
Trans-European Suture Zone
The Trans-European Suture Zone or Tornquist Zone is the area of the suture of Baltica and Eastern Avalonia. It runs from a portion of the North Sea close to Denmark, through southern Denmark, a portion of the Baltic Sea between Denmark and Poland (by Germany's Rügen Island), and through Poland. It then follows the eastern margin of the Eastern Carpathian Mountains in western Ukraine. Finally, it runs to the Black Sea. However, in the Sudetes Mountains and the Eastern Carpathians, it evolved through the Variscan and the Alpine orogenies, rather than the Caledonian one.[18]
The Scandian phase involved a collision between eastern Greenland on the eastern margin of Laurentia and the margin of the Baltoscandian platform of the Fennoscandian peninsula of Baltica. It involved the Scandinavian Caledonides in what is now Norway and the Swedish areas by its border. It occurred from the Wenlock Epoch of the Silurian to the Mid Devonian (430–380 Ma). Gee et al. (2013) and Ladenberger et al. (2012) propose a revised onset dating set at 440 Ma, however, there is no consensus about this.[19]
The Scandian orogenic event also led to the formation of mountains of Queen Louise Land (or Dronning Louise Land) in north-eastern Greenland. It is an exposed N–S trending thrust zone which marks the western limit of intense Caledonian deformation. The dominant structures are interpreted as having resulted from sinistraltranspression, which involved strain partitioning of regional deformation between sinistral strike-slip movements in the east and NW-directed oblique thrusting and folding further to the west.[20]
Acadian Late Caledonian or proto-Variscan orogeny in the British Isles
As mentioned above, the British Isles were separated and belonged to two different tectonic plates: Laurentia (Scotland and northern and western Ireland) and Avalonia (England and Wales and the rest of Ireland). The Early Devonian Acadian event in this area saw the amalgamation of these landmasses to form the British Isles as they are now. This occurred through NW-dipping subduction of Avalonian oceanic crust beneath the southern margins of the Laurentian landmasses.
Since the 1980s the term Acadian, which referred to the Late Silurian to Early Devonian orogeny in the Northern Appalachians, and the Maritime Provinces of Canada has been applied to the early Devonian deformation phase in the British Caledonides by analogy with the one that occurred in what is now North America.[17] Late Caledonian orogeny is another term used in reference to this phase.
This phase involved a soft docking or soft collision rather an orogen-causing hard continental collision like the Eastern Avalonia docking with Baltica.
This orogenic event has been interpreted as a late Caledonian phase and as having been driven by the closure of the Iapetus Ocean. However, there is also an argument that it would more appropriate to regard it as a proto-Variscan orogeny. This is because this Devonian event postdated the collision of Avalonia with Laurentia by 15–20 million years and was coeval with the early phase of the Variscan orogeny (Eo-Variscan or Ligerian) and because it was not related to the Iapetus Ocean.[17]
It also has been argued that, although the Acadian orogeny in the British Isles involved the Iapetus Ocean closure, its driving force was actually a push from the south caused by the northward subduction of the Rheic Ocean which lied to the south of Avalonia and separated it from Gondwana. The closure of this ocean involved the (early) Eo-Variscan collision of Gondwana-related terranes in which Eastern Avalonia was peripherally involved.[17][23]
Subduction of the Iapetus Ocean occurred beneath the Midland Valleyterrane of Scotland. There is a Trans-Suture Suite of intrusive plutons which straddle both sides of the trace of the Iapetus Suture in the Southern Uplandsterrane of Scotland (to the north of the suture) and the Lakesman-Leinster terrane of northern England and eastern Ireland (to the south of the suture) which were at the Laurentia and Avalonia margins respectively. The emplacement of the plutons occurred after the subduction of the Iapetus Ocean ended.[24][25]
The Southern Uplands terrane is thought to be an accretionary wedge. Deep marine sedimentation here in response to subduction begun 455 Ma and marked the switch from an initial SE-dipping Iapetus subduction under Avalonia to a NW-dipping one beneath Laurentia. About 430 Ma accretion in the Southern Uplands and Ireland switched from being orthogonal (at a right angle) to a sinistrally (left-lateral) transpressive one as indicated by cleavage transecting folds counterclockwise. Turbidite deposition in the oceanic trench overlapped onto the Lakesman-Leinster terrane. Laurentia-Avalonia convergence and Iapetus Ocean subduction ceased by C. 420 Ma as indicated by a mid-Silurian weakening of deformation in the accretionary wedge.[26]
Magma production should be larger in convergent tectonic regimes during subduction and markedly reduced with the change to post-subduction collisional regimes. However, during Iapetus subduction (455–425 Ma) this was low and intrusive rocks were largely absent across all terranes in the concerned area in this period. Most Acadian magmatism occurred post-subduction (425-390 Ma) in a regional tectonic setting with alternating transpression and transtension phases. High rates of magma generation coincided with a c. 418–404 Ma Early Devonian sinistral transtension phase. This decreased during the 404–394 Ma Acadian transpression.[26]
In addition, the Southern Uplands accretionary wedge lacks evidence of the presence of a volcanic arc as usually found near subduction zones.[27] This has led to the hypotheses that arc rocks were eroded and thus have not been preserved, that the arc was displaced by lateral movement along strike-slip faults or that this is due to flat–slab subduction, which reduces magmatism rates.[26]
Nelison et al. (2009) propose an Iapetus Ocean subducting slab breakoff model to account for the intrusive rocks in the Grampian terrane being emplaced post-subduction. However, Miles at al. (2016) note that the intrusive rocks in the Trans-Suture Suite and in all the terranes in the region are similar in age and geochemistry. Thus, they argue that the common mechanism for the whole region involved an Iapetus Ocean slab which did not just break off. It also peeled back below the Iapetus Suture for c. 100 km to the SE below Avalonia. Thus they invoke a model of slab drop-off caused by lithospheric mantledelamination.
The Acadian Orogeny affected the Lakesman terrane and north Wales. Transpression resulted in regionally clockwise transecting sinistral transpressive cleavages which were superimposed on pre-existing structures. Folding northwest of the Iapetus Suture is weak and this northward weakening of deformation may indicate that it is linked with Rheic Oceansubduction rather than Iapetus Ocean closure.[26]
The Lake District in north-western England was at the north-western margin of the English part of Eastern Avalonia which converged and collided with Scotland and was thus involved in the Acadian phase. Generally, Acadian deformation metamorphosedmudrocks throughout various geologic formations of the district into slates by creating slaty cleavages.[28]
In the Early to Middle Ordovician the Skiddaw Group was a deep submarine sedimentary basin whose sediments were largely derived from an earlier continental margin volcanic arc. It underwent subduction-related tectonic uplift which brought it above water. Convergence eventually caused the ranges of the Southern Uplands of Scotland to extend across the sutured Iapetus Ocean. This caused thrustimbrication of the group and a penetrative slaty cleavage with a broadly Caledonian trend superimposed on the earlier fabric of the group. The final stage of compression may have also involved the reactivation of thrust faults.[29][30]
In the Middle to Late Ordovician the Borrowdale Volcanic Group (BVG) and Eycott Volcanic Group (EVG) underwent caldera collapse as indicated by block-faulted tracts. The superimposed Acadian deformations are regional monoclines north of the EVG and south of the BVG, which are part the Lake District anticline whose core is the Skiddaw Group (which is overlain by the EVG). The BVD is dominated by synclines and anticlines are generally absent. This suggests that the Acadian deformation tightened the main basins of the BGV and folded its strata and that the major synclines were reactivated and tightened volcanic basins. A cleavage with fabrics varying from spaced to slaty and penetrative was superimposed locally.[31][32]
The Windermere Supergroup was a foreland basin on the Avalonia margin which was created by the subduction of Avalonia continental crust beneath Laurentia. It underwent accelerating subsidence through the Middle to Late Silurian.[33] It was related to indentation of a rigid basement block that was driven northward during Acadian continental collision creating transpressivestrain. The Acadian orogeny created a single penetrative cleavage throughout the Supergroup. It underwent a small clockwise transection of the folds in the west of the outcrop and small anticlockwise one in the east which is part of a wider transecting cleavage pattern across the Avalonian rocks of Britain and Ireland.[31][34]
The WestmorlandMonocline, which lies above the southern margin of the Lake District batholith (which underlies most of the central part of the district) is a more extensive Acadian deformation which affects the BVG outcrop southern margin overlying Windermere Supergroup strata. Cleavage is strongly developed in the volcanic rocks close to its hinge zone. The Honister slate belt in the north of this area is another enhanced cleavage zone. Deformation is more marked at the edges of the batholith as the granite it is made of is resistant to tectonic stress.[31]
The island is composed mainly of the Manx Group and the Dalby Group which were deformed in a sinistraltranspression zone during the sinistral, oblique closure of the Iapetus Ocean. Folds are transected clockwise by their cleavage, major strike-parallel sinistral faults and ductileshear zones thought to be related to this transpression.[35] All primary folds have the same style and are associated with the same regional cleavage suggesting that they are roughly coeval. There is ductile deformation in some localities and a broad shear zone in the Langness Peninsula which deform the primary cleavage and are thought to have formed during or soon after the main deformation phase.[36]
The Dalby Group was overthrust onto the Manx Group, probably in the early Devonian. During the final stage of the Iapetus Ocean closure its turbidites were deposited from the NE into a marine basin which bridged the Avalonia and Laurentia margins. The tectonic contact between the two groups has been correlated either with the Windermere Supergroup (Lake District) turbidites or the Riccarton Group, (Southern Uplandsterrane).The former hypothesis implies that the Dalby Group was originally deposited on the Manx Group and was subsequently faulted into its present day relationship. The latter one implies that it is the toe end of the Southern Uplands turbidite accretionary wedge onlapping or thrust onto the Avalonia continental margin.[37]
The broad deformation style and age of the Manx Group are very similar to the equivalent features of the Skiddaw Group in the Lake District and the Ribband Group in SE Ireland. This group is thought to be their regional equivalent. It underwent two main deformation phases which also affected the Dalby Group: a) a pervasive slaty cleavage associated with gently to moderately plunging folds which also affected many of the minor igneous intrusions, b) a gently dipping crenulationcleavage associated with small folds verging towards the bedding dip direction.[31]
There are several ductile shear zones which run subparallel to the Manx Group northeast-oriented boundary faults which indicate predominantly sinistral shear and possibly a transition from orthogonal compression to transpression during the later stages of Acadian deformation. This makes the island more similar to the Southern Uplands terrane of Scotland than the Lake District inlier in this respect.[31]
The Irish Grampian terrane is the continuation of Grampian terrane in Scotland. It is composed of the Dalradian Supergroup and its gneissbasement which was affected by the Grampian orogeny. These rocks responded to Acadian deformation relatively rigidly and their main deformation was a NE–SW trending ductile sinistral shear zone in the Dalradian. The Donegal batholith (c. 428–400 Ma) was emplaced into this shear zone. The Leannan Fault is a major splay of the Great Glen Fault of Scotland. Its movement occurred in the Devonian. The Fair Head–Clew Bay Line is a lineament and fault zone from Antrim to Mayo. Here there was sinistral Acadian brittle deformation and strike-slip motion in the Central Ox Mountains. This may continue as a sinistral transpressiveshear zone into the Clew Bay southern margin. The Ox Mountains granodiorite was emplaced c. 412 Ma.[38]
The Midland Valley terrane is continuation of the terrane of the same name in Scotland. It underwent more ductile regional strain than the Grampian terrane, with upright folds, cleavage and polyphase deformation. Acadian deformation resulted in steeply-dipping to vertical Silurian rocks and a NE trending syncline in the Curlew Mountainsinlier, folds and a SE dipping thrust fault in the Pomeroy inlier (County Tyrone) and NE trending open buckle folds in the Early Old Red Sandstone rocks by Cushendall, in County Antrim.[39]
The Longford-Down terrane is the SE continuation of the Southern Uplandsterrane in Scotland and the Southern Uplands Fault all the way to Galway Bay in County Galway, western Ireland. It lies to the SE of the Grampian and Midland Valley terranes. In underwent most of its deformation during the subduction and closure of the Iapetus Ocean prior to the Acadian orogeny. It has Early Palaeozoic deep marine rocks deposited on the NW margin of the Iapetus Ocean. The Southern-Upland-Longford-Down terrane has been interpreted as having been either an accretionary wedge or a back-arc basin.[38]
The terrane has three relief belts. The northern belt and the northernmost part of the Central Belt underwent pure shear deformation with an axial planar cleavage and a stretching lineation perpendicular to the fold hinges. The Southern Belt and the rest of the Central belt underwent sinistral transpression. This reflects a Late Ordovician–Silurian change from an orthogonal to an oblique tectonic plate collision. In the Central Belt the cleavage transects folds in a clockwise sense and is accompanied by a sub-horizontal stretching lineation. In the Southern belt the Tinure Fault is the surface expression of the Iapetus Suture zone.[38]
The Leinster terrane is the continuation of the Lakesman terrane in the Lake District of England and the Isle of Man. Unlike the other main terranes in Ireland, it was part of Eastern Avalonia. It covers the east and southwest of Ireland. It is dominated by upright folds with associated cleavage and thrust faulting. Later large scale NE–SW trending Acadian shear zones In the Leinster inlier are associated with the coeval emplacement of the Early Devonian Leinster Granite, which is the largest batholith in the British Isles.[38] Its Northern unit was intruded incrementally by three crosscutting types of granite and was formed over 16.8 million years. The oldest granite is dated at c. 417 Ma. Following deformation there was another intrusion c. 410 Ma (equigranular granite) and this in turn was cut by megacrystic granite at c. 404.9 Ma.[40]
In the Dingle Peninsula (County Kerry) in south-western Ireland, the Dingle Group underwent Acadian deformation with a high-strain penetrative cleavage prior to the deposition of the Upper Devonian Slieve Mish Group in the same peninsula. The Early Devonian Dingle Basin was the source of detritus deposition in the Late Devonian Munster Basin to the south (which covered the Kerry and Cork counties). The Dingle basin underwent sediment recycling into the Munster Basin following Mid-Devonian Acadian basin inversion.[41]
The Iapetus Suture also extends along the margin of the Baltoscandian platform of the Fennoscandian Peninsula which collided with the eastern margin of Greenland along the eastern margin of Laurentia in the Scandian orogeny.
Controversies
According to some authors, the Caledonian continental collisions involved another microcontinent, Armorica (southern Portugal, most of the north of France and parts of southern Germany and the Czech Republic), even smaller than Avalonia.[43] This microcontinent probably did not form one consistent unit, but was instead a series of fragments, of which the current Armorican and Bohemian Massifs are the most important. The ocean between the combined continental mass of Laurentia, Baltica and Avalonia (called Euramerica, Laurussia or Old Red Continent) and Armorica is called the Rheic Ocean.
The paleogeographic position of the Armorica crustal fragments between the Ordovician and Carboniferous is highly disputed though. There are indications that the Bohemian Massif started moving northward from the Ordovician onward,[44] but many authors place the accretion of the Armorican terranes with the southern margin of Laurussia in the Carboniferous Variscan orogeny (about 340 million years ago). The Rhenohercynian basin, a back-arc basin, formed at the southern margin of Euramerica just after the Caledonian orogeny. According to these authors, a small rim from Euramerica rifted off when this basin formed. The basin closed when these Caledonian deformed terranes were accreted again to Laurussia during the Hercynian orogeny.[45]
^This dating has been debated and three different date ranges have been proposed, 750–700 Ma, 600–570 Ma and 550–530 Ma. See Robert et al. (2021)
^The timing of Avalonia's break from Gondwana is disputed. Fortey and Cocks (1992) proposed that Avalonia rifted in the Early Ordovician, whereas Landing (1996) argued for a Late Precambrian separation.
Chew, D. M.; Stillman, C. J. (2022-07-18). "Late Caledonian orogeny and magmatism". The Geology of Ireland. Liverpool University Press. pp. 143–174. doi:10.2307/jj.12638997.11. ISBN978-1-903544-49-5.
Corfu, F.; Gasser, D.; Chew, D. M. (2014). "New perspectives on the Caledonides of Scandinavia and related areas: introduction". Geological Society, London, Special Publications. 390 (1): 1–8. Bibcode:2014GSLSP.390....1C. doi:10.1144/SP390.28. ISSN0305-8719.
Ennis, Meg; Meere, Patrick A.; Timmerman, Martin J.; Sudo, Masafumi (2015). "Post-Acadian sediment recycling in the Devonian Old Red Sandstone of Southern Ireland". Gondwana Research. 28 (4). Elsevier BV: 1415–1433. Bibcode:2015GondR..28.1415E. doi:10.1016/j.gr.2014.10.007. ISSN1342-937X.
Fortey, R.A.; Cocks, L.R.M. (1992). "The early palaeozoic of the North Atlantic region as a test case for the use of fossils in continental reconstruction". Tectonophysics. 206 (1–2). Elsevier BV: 147–158. Bibcode:1992Tectp.206..147F. doi:10.1016/0040-1951(92)90373-e. ISSN0040-1951.
Fossen, Haakon; Dunlap, W.James (1998). "Timing and kinematics of Caledonian thrusting and extensional collapse, southern Norway: evidence from 40Ar/39Ar thermochronology". Journal of Structural Geology. 20 (6). Elsevier BV: 765–781. doi:10.1016/s0191-8141(98)00007-8. ISSN0191-8141.
Fritschle, Tobias; Daly, J. Stephen; Whitehouse, Martin J.; McConnell, Brian; Buhre, Stephan (2017-10-12). "Multiple intrusive phases in the Leinster Batholith, Ireland: geochronology, isotope geochemistry and constraints on the deformation history". Journal of the Geological Society. 175 (2). Geological Society of London: 229–246. doi:10.1144/jgs2017-034. ISSN0016-7649.
Gee, David G.; Janák, Marian; Majka, Jarosław; Robinson, Peter; van Roermund, Herman (2013). "Subduction along and within the Baltoscandian margin during closing of the Iapetus Ocean and Baltica-Laurentia collision". Lithosphere. 5 (2). GeoScienceWorld: 169–178. Bibcode:2013Lsphe...5..169G. doi:10.1130/l220.1. ISSN1947-4253.
Golonka, Jan; Krobicki, Michał; Poprawa, Paweł; Paul, Zbigniew; Khudoley, Andriej (2009-01-01). "EARLY PALEOZOIC EVOLUTION OF THE PERI-GONDWANA PLATES". Geologia/Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. 33 (2/1): 339–344.
Jones, Kevin; Blake, Stephen (2003). Mountain Building in Scotland. The Open University. ISBN0-7492-5847-0.
Phillips, W.E.A. (2001). "Caledonian deformation". In Holland, C.H. (ed.). The Geology of Ireland. Edinburgh: Dunedin Academic Press. pp. 179–200.
Pollock, Jeffrey C.; Hibbard, James P.; Sylvester, Paul J. (2009). "Early Ordovician rifting of Avalonia and birth of the Rheic Ocean: U–Pb detrital zircon constraints from Newfoundland". Journal of the Geological Society. 166 (3). Geological Society of London: 501–515. Bibcode:2009JGSoc.166..501P. doi:10.1144/0016-76492008-088. ISSN0016-7649.
Rice, A.H.N.; Frank, W. (2003). "The early Caledonian (Finnmarkian) event reassessed in Finnmark: 40Ar/39Ar cleavage age data from NW Varangerhalvøya, N. Norway". Tectonophysics. 374 (3–4). Elsevier BV: 219–236. doi:10.1016/s0040-1951(03)00240-3. ISSN0040-1951.
Schätz, M.; Reischmann, T.; Tait, J.; Bachtadse, V.; Bahlburg, H.; Martin, U. (2002-10-01). "The Early Palaeozoic break-up of northern Gondwana, new palaeomagnetic and geochronological data from the Saxothuringian Basin, Germany". International Journal of Earth Sciences. 91 (5): 838–849. Bibcode:2002IJEaS..91..838S. doi:10.1007/s00531-002-0261-3. ISSN1437-3254.
Schofield, David I.; Potter, Joanna; Barr, Sandra M.; Horák, Jana M.; Millar, Ian L.; Longstaffe, Frederick J. (2016). "Reappraising the Neoproterozoic 'East Avalonian' terranes of southern Great Britain". Gondwana Research. 35. Elsevier BV: 257–271. Bibcode:2016GondR..35..257S. doi:10.1016/j.gr.2015.06.001. ISSN1342-937X.
Stone, P.; Cooper, A. H.; Evans, J. A. (1999). "The Skiddaw Group (English Lake District) reviewed: early Palaeozoic sedimentation and tectonism at the northern margin of Avalonia". Geological Society, London, Special Publications. 160 (1): 325–336. Bibcode:1999GSLSP.160..325S. doi:10.1144/GSL.SP.1999.160.01.21. ISSN0305-8719.
Thigpen, J.R.; Law, R.D.; Loehn, C.L.; Strachan, R. A.; Tracy, R.J.; Lloyd, G.E.; Roth, B.L.; Brown, S.J. (2013). "Thermal structure and tectonic evolution of the Scandian orogenic wedge, S cottish Caledonides: integrating geothermometry, deformation temperatures and conceptual kinematic-thermal models". Journal of Metamorphic Geology. 31 (8): 813–842. Bibcode:2013JMetG..31..813T. doi:10.1111/jmg.12046. ISSN0263-4929.
TODD, S. P.; MURPHY, F. C.; KENNAN, P. S. (1991). "On the trace of the Iapetus suture in Ireland and Britain". Journal of the Geological Society. 148 (5). Geological Society of London: 869–880. Bibcode:1991JGSoc.148..869T. doi:10.1144/gsjgs.148.5.0869. ISSN0016-7649.