Generally, it is hard to accurately compute the solutions of nonlinear differential equations due to its non-linearity. In order to overcome this difficulty, R. Hirota has made discrete versions of integrable systems with the viewpoint of "Preserve mathematical structures of integrable systems in the discrete versions".[9][10][11][12][13]
At the same time, Mark J. Ablowitz and others have not only made discrete soliton equations with discrete Lax pair but also compared numerical results between integrable difference schemes and ordinary methods.[14][15][16][17][18] As a result of their experiments, they have found that the accuracy can be improved with integrable difference schemes at some cases.[19][20][21][22]
References
^Nakamura, Y. (2004). A new approach to numerical algorithms in terms of integrable systems. International Conference on Informatics Research for Development of Knowledge Society Infrastructure. IEEE. pp. 194–205. doi:10.1109/icks.2004.1313425. ISBN0-7695-2150-9.
^Hirota, Ryogo (1977-10-15). "Nonlinear Partial Difference Equations. I. A Difference Analogue of the Korteweg-de Vries Equation". Journal of the Physical Society of Japan. 43 (4). Physical Society of Japan: 1424–1433. Bibcode:1977JPSJ...43.1424H. doi:10.1143/jpsj.43.1424. ISSN0031-9015.
^Hirota, Ryogo (1977-12-15). "Nonlinear Partial Difference Equations. II. Discrete-Time Toda Equation". Journal of the Physical Society of Japan. 43 (6). Physical Society of Japan: 2074–2078. Bibcode:1977JPSJ...43.2074H. doi:10.1143/jpsj.43.2074. ISSN0031-9015.
^Hirota, Ryogo (1977-12-15). "Nonlinear Partial Difference Equations III; Discrete Sine-Gordon Equation". Journal of the Physical Society of Japan. 43 (6). Physical Society of Japan: 2079–2086. Bibcode:1977JPSJ...43.2079H. doi:10.1143/jpsj.43.2079. ISSN0031-9015.
^Hirota, Ryogo (1978-07-15). "Nonlinear Partial Difference Equations. IV. Bäcklund Transformation for the Discrete-Time Toda Equation". Journal of the Physical Society of Japan. 45 (1). Physical Society of Japan: 321–332. Bibcode:1978JPSJ...45..321H. doi:10.1143/jpsj.45.321. ISSN0031-9015.
^Hirota, Ryogo (1979-01-15). "Nonlinear Partial Difference Equations. V. Nonlinear Equations Reducible to Linear Equations". Journal of the Physical Society of Japan. 46 (1). Physical Society of Japan: 312–319. Bibcode:1979JPSJ...46..312H. doi:10.1143/jpsj.46.312. ISSN0031-9015.
^Ablowitz, M. J.; Ladik, J. F. (1976). "Nonlinear differential–difference equations and Fourier analysis". Journal of Mathematical Physics. 17 (6). AIP Publishing: 1011–1018. Bibcode:1976JMP....17.1011A. doi:10.1063/1.523009. ISSN0022-2488.
^Ablowitz, M. J.; Ladik, J. F. (1976). "A Nonlinear Difference Scheme and Inverse Scattering". Studies in Applied Mathematics. 55 (3). Wiley: 213–229. doi:10.1002/sapm1976553213. ISSN0022-2526.
^Ablowitz, M. J.; Ladik, J. F. (1977). "On the Solution of a Class of Nonlinear Partial Difference Equations". Studies in Applied Mathematics. 57 (1). Wiley: 1–12. doi:10.1002/sapm19775711. ISSN0022-2526.
^Taha, Thiab R; Ablowitz, Mark I (1984). "Analytical and numerical aspects of certain nonlinear evolution equations. II. Numerical, nonlinear Schrödinger equation". Journal of Computational Physics. 55 (2). Elsevier BV: 203–230. Bibcode:1984JCoPh..55..203T. doi:10.1016/0021-9991(84)90003-2. ISSN0021-9991.
^Taha, Thiab R; Ablowitz, Mark I (1984). "Analytical and numerical aspects of certain nonlinear evolution equations. III. Numerical, Korteweg-de Vries equation". Journal of Computational Physics. 55 (2). Elsevier BV: 231–253. Bibcode:1984JCoPh..55..231T. doi:10.1016/0021-9991(84)90004-4. ISSN0021-9991.
^Taha, Thiab R; Ablowitz, Mark J (1988). "Analytical and numerical aspects of certain nonlinear evolution equations IV. Numerical, modified Korteweg-de Vries equation". Journal of Computational Physics. 77 (2). Elsevier BV: 540–548. Bibcode:1988JCoPh..77..540T. doi:10.1016/0021-9991(88)90184-2. ISSN0021-9991.