He became Research Associate and Research Fellow at the Centre national de la recherche scientifique (CNRS), working under Serge Haroche towards his 1984 thesis Propriétés radiatives des atomes de Rydberg dans une cavité résonnante ("Radiative properties of Rydberg atoms in a resonant cavity").[2]
He became interested in Rydberg atoms, because their relatively large size and sensitivity to microwave radiation makes them particularly suited to studies of matter/energy interaction. He demonstrated that these atoms, coupled to superconducting cavities containing some photons, are ideal systems for testing the laws of quantum decoherence and for demonstrating the possibility of constructing the components of quantum logic, with promising results for their use in informatics.[6][7]
His most recent work, quoted in the 2012 Nobel Prize-winning work,[8] allows photons to be counted in the cavity without their being destroyed, thus directly demonstrating the quantum measurement problem.[9][10] This ideal measure also helps combat quantum decoherence with a quantum feedback scheme which keeps the number of photons in the cavity constant.[11]
Raimond, J. M.; Brune, M; Haroche, S. (2001). "Manipulating quantum entanglement with atoms and photons in a cavity". Rev. Mod. Phys. 73 (3): 565–582. Bibcode:2001RvMP...73..565R. doi:10.1103/revmodphys.73.565.). Peer reviewed article describing in particular quantum logical operations.
Haroche, S.; Raimond, J. M. (10 August 2006). Exploring the Quantum : Atoms, Cavities, and photons. Oxford: Oxford University Press.
^Raimond, J. M.; Brune, M.; Haroche, S. (28 August 2001). "Manipulating quantum entanglement with atoms and photons in a cavity". Rev. Mod. Phys. 73 (73, 565): 565–582. Bibcode:2001RvMP...73..565R. doi:10.1103/revmodphys.73.565.