List of physical constants
The constants listed here are known values of physical constants expressed in SI units ; that is, physical quantities that are generally believed to be universal in nature and thus are independent of the unit system in which they are measured. Many of these are redundant, in the sense that they obey a known relationship with other physical constants and can be determined from them.
Table of physical constants
Symbol
Quantity
Value[ a] [ b]
Relative standard uncertainty
Ref[ 1]
c
{\displaystyle c}
speed of light in vacuum
299792 458 m⋅s−1
0
[ 2]
h
{\displaystyle h}
Planck constant
6.626070 15 × 10−34 J⋅Hz−1
0
[ 3]
ℏ ℏ -->
=
h
/
2
π π -->
{\displaystyle \hbar =h/2\pi }
reduced Planck constant
1.054571 817 ...× 10−34 J⋅s
0
[ 4]
k
,
k
B
{\displaystyle k,k_{\text{B}}}
Boltzmann constant
1.380649 × 10−23 J⋅K−1
0
[ 5]
G
{\displaystyle G}
Newtonian constant of gravitation
6.67430 (15)× 10−11 m3 ⋅kg−1 ⋅s−2
2.2× 10−5
[ 6]
Λ Λ -->
{\displaystyle \Lambda }
cosmological constant
1.089(29)× 10−52 m−2 [ c] 1.088(30)× 10−52 m−2 [ d]
0.027 0.028
[ 7] [ 8]
σ σ -->
=
π π -->
2
k
B
4
/
60
ℏ ℏ -->
3
c
2
{\displaystyle \sigma =\pi ^{2}k_{\text{B}}^{4}/60\hbar ^{3}c^{2}}
Stefan–Boltzmann constant
5.670374 419 ...× 10−8 W⋅m−2 ⋅K−4
0
[ 9]
c
1
=
2
π π -->
h
c
2
{\displaystyle c_{1}=2\pi hc^{2}}
first radiation constant
3.741771 852 ...× 10−16 W⋅m2
0
[ 10]
c
1L
=
2
h
c
2
/
s
r
{\displaystyle c_{\text{1L}}=2hc^{2}/\mathrm {sr} }
first radiation constant for spectral radiance
1.191042 972 ...× 10−16 W⋅m2 ⋅sr−1
0
[ 11]
c
2
=
h
c
/
k
B
{\displaystyle c_{2}=hc/k_{\text{B}}}
second radiation constant
1.438776 877 ...× 10−2 m⋅K
0
[ 12]
b
{\displaystyle b}
[ e]
Wien wavelength displacement law constant
2.897771 955 ...× 10−3 m⋅K
0
[ 13]
b
′
{\displaystyle b'}
[ f]
Wien frequency displacement law constant
5.878925 757 ...× 1010 Hz⋅K−1
0
[ 14]
b
entropy
{\displaystyle b_{\text{entropy}}}
Wien entropy displacement law constant
3.002916 077 ...× 10−3 m⋅K
0
[ 15]
e
{\displaystyle e}
elementary charge
1.602176 634 × 10−19 C
0
[ 16]
G
0
=
2
e
2
/
h
{\displaystyle G_{0}=2e^{2}/h}
conductance quantum
7.748091 729 ...× 10−5 S
0
[ 17]
G
0
− − -->
1
=
h
/
2
e
2
{\displaystyle G_{0}^{-1}=h/2e^{2}}
inverse conductance quantum
12906 .40372 ... Ω
0
[ 18]
R
K
=
h
/
e
2
{\displaystyle R_{\text{K}}=h/e^{2}}
von Klitzing constant
25812 .80745 ... Ω
0
[ 19]
K
J
=
2
e
/
h
{\displaystyle K_{\text{J}}=2e/h}
Josephson constant
483597 .8484...× 109 Hz⋅V−1
0
[ 20]
Φ Φ -->
0
=
h
/
2
e
{\displaystyle \Phi _{0}=h/2e}
magnetic flux quantum
2.067833 848 ...× 10−15 Wb
0
[ 21]
α α -->
=
e
2
/
4
π π -->
ε ε -->
0
ℏ ℏ -->
c
{\displaystyle \alpha =e^{2}/4\pi \varepsilon _{0}\hbar c}
fine-structure constant
0.007297 352 5643 (11)
1.6× 10−10
[ 22]
α α -->
− − -->
1
{\displaystyle \alpha ^{-1}}
inverse fine-structure constant
137.035999 177 (21)
1.6× 10−10
[ 23]
μ μ -->
0
=
4
π π -->
α α -->
ℏ ℏ -->
/
e
2
c
{\displaystyle \mu _{0}=4\pi \alpha \hbar /e^{2}c}
vacuum magnetic permeability
1.256637 061 27 (20)× 10−6 N⋅A−2
1.6× 10−10
[ 24]
Z
0
=
4
π π -->
α α -->
ℏ ℏ -->
/
e
2
{\displaystyle Z_{0}=4\pi \alpha \hbar /e^{2}}
characteristic impedance of vacuum
376.730313 412 (59) Ω
1.6× 10−10
[ 25]
ε ε -->
0
=
e
2
/
4
π π -->
α α -->
ℏ ℏ -->
c
{\displaystyle \varepsilon _{0}=e^{2}/4\pi \alpha \hbar c}
vacuum electric permittivity
8.854187 8188 (14)× 10−12 F⋅m−1
1.6× 10−10
[ 26]
m
e
{\displaystyle m_{\text{e}}}
electron mass
9.109383 7139 (28)× 10−31 kg
3.1× 10−10
[ 27]
m
μ μ -->
{\displaystyle m_{\mu }}
muon mass
1.883531 627 (42)× 10−28 kg
2.2× 10−8
[ 28]
m
τ τ -->
{\displaystyle m_{\tau }}
tau mass
3.16754 (21)× 10−27 kg
6.8× 10−5
[ 29]
m
p
{\displaystyle m_{\text{p}}}
proton mass
1.672621 925 95 (52)× 10−27 kg
3.1× 10−10
[ 30]
m
n
{\displaystyle m_{\text{n}}}
neutron mass
1.674927 500 56 (85)× 10−27 kg
5.1× 10−10
[ 31]
m
p
/
m
e
{\displaystyle m_{\text{p}}/m_{\text{e}}}
proton-to-electron mass ratio
1836 .152673 426 (32)
1.7× 10−11
[ 32]
m
W
/
m
Z
{\displaystyle m_{\text{W}}/m_{\text{Z}}}
W-to-Z mass ratio
0.88145 (13)
1.5× 10−4
[ 33]
sin
2
-->
θ θ -->
W
{\displaystyle \sin ^{2}\theta _{\text{W}}}
=
1
− − -->
(
m
W
/
m
Z
)
2
{\displaystyle =1-(m_{\text{W}}/m_{\text{Z}})^{2}}
sine-square weak mixing angle
0.22305 (23) [ g] 0.23121 (4) [ h] 0.23153 (4) [ i]
1.0× 10−3 1.7× 10−4 1.7× 10−4
[ 34] [ 35] [ 35]
g
e
{\displaystyle g_{\text{e}}}
electron g -factor
−2.002319 304 360 92 (36)
1.8× 10−13
[ 36]
g
μ μ -->
{\displaystyle g_{\mu }}
muon g -factor
−2.002331 841 23 (82)
4.1× 10−10
[ 37]
g
p
{\displaystyle g_{\text{p}}}
proton g -factor
5.585694 6893 (16)
2.9× 10−10
[ 38]
h
/
2
m
e
{\displaystyle h/2m_{\text{e}}}
quantum of circulation
3.636947 5467 (11)× 10−4 m2 ⋅s−1
3.1× 10−10
[ 39]
μ μ -->
B
=
e
ℏ ℏ -->
/
2
m
e
{\displaystyle \mu _{\text{B}}=e\hbar /2m_{\text{e}}}
Bohr magneton
9.274010 0657 (29)× 10−24 J⋅T−1
3.1× 10−10
[ 40]
μ μ -->
N
=
e
ℏ ℏ -->
/
2
m
p
{\displaystyle \mu _{\text{N}}=e\hbar /2m_{\text{p}}}
nuclear magneton
5.050783 7393 (16)× 10−27 J⋅T−1
3.1× 10−10
[ 41]
r
e
=
α α -->
ℏ ℏ -->
/
m
e
c
{\displaystyle r_{\text{e}}=\alpha \hbar /m_{\text{e}}c}
classical electron radius
2.817940 3205 (13)× 10−15 m
4.7× 10−10
[ 42]
σ σ -->
e
=
(
8
π π -->
/
3
)
r
e
2
{\displaystyle \sigma _{\text{e}}=(8\pi /3)r_{\text{e}}^{2}}
Thomson cross section
6.652458 7051 (62)× 10−29 m2
9.3× 10−10
[ 43]
a
0
=
ℏ ℏ -->
/
α α -->
m
e
c
{\displaystyle a_{0}=\hbar /\alpha m_{\text{e}}c}
Bohr radius
5.291772 105 44 (82)× 10−11 m
1.6× 10−10
[ 44]
R
∞ ∞ -->
=
α α -->
2
m
e
c
/
2
h
{\displaystyle R_{\infty }=\alpha ^{2}m_{\text{e}}c/2h}
Rydberg constant
10973 731 .568157 (12) m−1
1.1× 10−12
[ 45]
R
y
=
R
∞ ∞ -->
h
c
=
E
h
/
2
{\displaystyle \mathrm {Ry} =R_{\infty }hc=E_{\text{h}}/2}
Rydberg unit of energy
2.179872 361 1030 (24)× 10−18 J
1.1× 10−12
[ 46]
E
h
=
α α -->
2
m
e
c
2
{\displaystyle E_{\text{h}}=\alpha ^{2}m_{\text{e}}c^{2}}
Hartree energy
4.359744 722 2060 (48)× 10−18 J
1.1× 10−12
[ 47]
G
F
/
(
ℏ ℏ -->
c
)
3
{\displaystyle G_{\text{F}}/(\hbar c)^{3}}
Fermi coupling constant
1.1663787 (6)× 10−5 GeV−2
5.1× 10−7
[ 48]
N
A
{\displaystyle N_{\text{A}}}
Avogadro constant
6.022140 76 × 1023 mol−1
0
[ 49]
R
=
N
A
k
B
{\displaystyle R=N_{\text{A}}k_{\text{B}}}
molar gas constant
8.314462 618 153 24 J⋅mol−1 ⋅K−1
0
[ 50]
F
=
N
A
e
{\displaystyle F=N_{\text{A}}e}
Faraday constant
96485 .332123 310 0184 C⋅mol−1
0
[ 51]
N
A
h
{\displaystyle N_{\text{A}}h}
molar Planck constant
3.990312 712 893 4314 × 10−10 J⋅s⋅mol−1
0
[ 52]
M
(
12
C
)
=
N
A
m
(
12
C
)
{\displaystyle M({}^{12}{\text{C}})=N_{\text{A}}m({}^{12}{\text{C}})}
molar mass of carbon-12
12.000000 0126 (37)× 10−3 kg⋅mol−1
3.1× 10−10
[ 53]
m
u
=
m
(
12
C
)
/
12
{\displaystyle m_{\text{u}}=m({}^{12}{\text{C}})/12}
atomic mass constant
1.660539 068 92 (52)× 10−27 kg
3.1× 10−10
[ 54]
M
u
=
M
(
12
C
)
/
12
{\displaystyle M_{\text{u}}=M({}^{12}{\text{C}})/12}
molar mass constant
1.000000 001 05 (31)× 10−3 kg⋅mol−1
3.1× 10−10
[ 55]
V
m
(
Si
)
{\displaystyle V_{\text{m}}({\text{Si}})}
molar volume of silicon
1.205883 199 (60)× 10−5 m3 ⋅mol−1
4.9× 10−8
[ 56]
Δ Δ -->
ν ν -->
Cs
{\displaystyle \Delta \nu _{\text{Cs}}}
hyperfine transition frequency of 133 Cs
9192 631 770 Hz
0
[ 57]
Uncertainties
While the values of the physical constants are independent of the system of units in use, each uncertainty as stated reflects our lack of knowledge of the corresponding value as expressed in SI units, and is strongly dependent on how those units are defined. For example, the atomic mass constant
m
u
{\displaystyle m_{\text{u}}}
is exactly known when expressed using the dalton (its value is exactly 1 Da), but the kilogram is not exactly known when using these units, the opposite of when expressing the same quantities using the kilogram.
Technical constants
Some of these constants are of a technical nature and do not give any true physical property, but they are included for convenience. Such a constant gives the correspondence ratio of a technical dimension with its corresponding underlying physical dimension. These include the Boltzmann constant
k
B
{\displaystyle k_{\text{B}}}
, which gives the correspondence of the dimension temperature to the dimension of energy per degree of freedom, and the Avogadro constant
N
A
{\displaystyle N_{\text{A}}}
, which gives the correspondence of the dimension of amount of substance with the dimension of count of entities (the latter formally regarded in the SI as being dimensionless ). By implication, any product of powers of such constants is also such a constant, such as the molar gas constant
R
{\displaystyle R}
.
See also
Notes
^ The values are given in the so-called concise form ; the number in parentheses is the standard uncertainty and indicates the amount by which the least significant digits of the value are uncertain.
^ In some instances an exact value has been displayed, calculated from the defining expression, rather than the incomplete decimal expansion as given by the source.
^ Planck Collaboration
^ 6-parameter ΛCDM fit
^
b
=
(
5
+
W
0
(
− − -->
5
e
− − -->
5
)
)
− − -->
1
h
c
k
{\displaystyle b=\left(5+W_{0}\left(-5e^{-5}\right)\right)^{-1}{\frac {hc}{k}}}
, where
W
0
{\displaystyle W_{0}}
is the principal branch of the Lambert W function .
^
b
′
=
(
3
+
W
0
(
− − -->
3
e
− − -->
3
)
)
k
h
{\displaystyle b'=\left(3+W_{0}\left(-3e^{-3}\right)\right){\frac {k}{h}}}
, where
W
0
{\displaystyle W_{0}}
is the principal branch of the Lambert W function .
^ CODATA value
^ minimal subtraction scheme definition
^ effective angle definition
References
^
Mohr, P.; Tiesinga, E.; Newell, D.; Taylor, B. (2024), Codata Internationally Recommended 2022 Values of the Fundamental Physical Constants
^ "2022 CODATA Value: speed of light in vacuum" . The NIST Reference on Constants, Units, and Uncertainty . NIST . May 2024. Retrieved 2024-05-18 .
^ "2022 CODATA Value: Planck constant" . The NIST Reference on Constants, Units, and Uncertainty . NIST . May 2024. Retrieved 2024-05-18 .
^ "2022 CODATA Value: reduced Planck constant" . The NIST Reference on Constants, Units, and Uncertainty . NIST . May 2024. Retrieved 2024-05-18 .
^ "2022 CODATA Value: Boltzmann constant" . The NIST Reference on Constants, Units, and Uncertainty . NIST . May 2024. Retrieved 2024-05-18 .
^ "2022 CODATA Value: Newtonian constant of gravitation" . The NIST Reference on Constants, Units, and Uncertainty . NIST . May 2024. Retrieved 2024-05-18 .
^ Planck Collaboration (2020). "Planck 2018 results. VI. Cosmological parameters (page 17: Λ = (2.846± 0.076)× 10−122 m Pl 2 )". Astronomy & Astrophysics . 641 : A6. arXiv :1807.06209 . Bibcode :2020A&A...641A...6P . doi :10.1051/0004-6361/201833910 . S2CID 119335614 .
^ Workman, R L; et al. (8 August 2022). "Review of Particle Physics. 2. Astrophysical Constants and Parameters (2023 revision)" (PDF) . Progress of Theoretical and Experimental Physics . 2022 (8): 2. doi :10.1093/ptep/ptac097 . Retrieved 31 May 2024 .
^ "2022 CODATA Value: Stefan–Boltzmann constant" . The NIST Reference on Constants, Units, and Uncertainty . NIST . May 2024. Retrieved 2024-05-18 .
^ "2022 CODATA Value: first radiation constant" . The NIST Reference on Constants, Units, and Uncertainty . NIST . May 2024. Retrieved 2024-05-18 .
^ "2022 CODATA Value: first radiation constant for spectral radiance" . The NIST Reference on Constants, Units, and Uncertainty . NIST . May 2024. Retrieved 2024-05-18 .
^ "2022 CODATA Value: second radiation constant" . The NIST Reference on Constants, Units, and Uncertainty . NIST . May 2024. Retrieved 2024-05-18 .
^ "2022 CODATA Value: Wien wavelength displacement law constant" . The NIST Reference on Constants, Units, and Uncertainty . NIST . May 2024. Retrieved 2024-05-18 .
^ "2022 CODATA Value: Wien frequency displacement law constant" . The NIST Reference on Constants, Units, and Uncertainty . NIST . May 2024. Retrieved 2024-05-18 .
^ Delgado-Bonal A (May 2017). "Entropy of radiation: the unseen side of light" . Scientific Reports . 7 (1): 1642. Bibcode :2017NatSR...7.1642D . doi :10.1038/s41598-017-01622-6 . PMC 5432030 . PMID 28490790 .
^ "2022 CODATA Value: elementary charge" . The NIST Reference on Constants, Units, and Uncertainty . NIST . May 2024. Retrieved 2024-05-18 .
^ "2022 CODATA Value: conductance quantum" . The NIST Reference on Constants, Units, and Uncertainty . NIST . May 2024. Retrieved 2024-05-18 .
^ "2022 CODATA Value: inverse of conductance quantum" . The NIST Reference on Constants, Units, and Uncertainty . NIST . May 2024. Retrieved 2024-05-18 .
^ "2022 CODATA Value: von Klitzing constant" . The NIST Reference on Constants, Units, and Uncertainty . NIST . May 2024. Retrieved 2024-05-18 .
^ "2022 CODATA Value: Josephson constant" . The NIST Reference on Constants, Units, and Uncertainty . NIST . May 2024. Retrieved 2024-05-18 .
^ "2022 CODATA Value: magnetic flux quantum" . The NIST Reference on Constants, Units, and Uncertainty . NIST . May 2024. Retrieved 2024-05-18 .
^ "2022 CODATA Value: fine-structure constant" . The NIST Reference on Constants, Units, and Uncertainty . NIST . May 2024. Retrieved 2024-05-18 .
^ "2022 CODATA Value: inverse fine-structure constant" . The NIST Reference on Constants, Units, and Uncertainty . NIST . May 2024. Retrieved 2024-05-18 .
^ "2022 CODATA Value: vacuum magnetic permeability" . The NIST Reference on Constants, Units, and Uncertainty . NIST . May 2024. Retrieved 2024-05-18 .
^ "2022 CODATA Value: characteristic impedance of vacuum" . The NIST Reference on Constants, Units, and Uncertainty . NIST . May 2024. Retrieved 2024-05-18 .
^ "2022 CODATA Value: vacuum electric permittivity" . The NIST Reference on Constants, Units, and Uncertainty . NIST . May 2024. Retrieved 2024-05-18 .
^ "2022 CODATA Value: electron mass" . The NIST Reference on Constants, Units, and Uncertainty . NIST . May 2024. Retrieved 2024-05-18 .
^ "2022 CODATA Value: muon mass" . The NIST Reference on Constants, Units, and Uncertainty . NIST . May 2024. Retrieved 2024-05-18 .
^ "2022 CODATA Value: tau mass" . The NIST Reference on Constants, Units, and Uncertainty . NIST . May 2024. Retrieved 2024-05-18 .
^ "2022 CODATA Value: proton mass" . The NIST Reference on Constants, Units, and Uncertainty . NIST . May 2024. Retrieved 2024-05-18 .
^ "2022 CODATA Value: neutron mass" . The NIST Reference on Constants, Units, and Uncertainty . NIST . May 2024. Retrieved 2024-05-18 .
^ "2022 CODATA Value: proton-electron mass ratio" . The NIST Reference on Constants, Units, and Uncertainty . NIST . May 2024. Retrieved 2024-05-18 .
^ "2022 CODATA Value: W to Z mass ratio" . The NIST Reference on Constants, Units, and Uncertainty . NIST . May 2024. Retrieved 2024-05-18 .
^ "2022 CODATA Value: weak mixing angle" . The NIST Reference on Constants, Units, and Uncertainty . NIST . May 2024. Retrieved 2024-05-18 .
^ a b Workman, R L; et al. (8 August 2022). "Review of Particle Physics. 1. Physical Constants (2023 revision)" (PDF) . Progress of Theoretical and Experimental Physics . 2022 (8): 1. doi :10.1093/ptep/ptac097 . Retrieved 31 May 2024 .
^ "2022 CODATA Value: electron g factor" . The NIST Reference on Constants, Units, and Uncertainty . NIST . May 2024. Retrieved 2024-05-18 .
^ "2022 CODATA Value: muon g factor" . The NIST Reference on Constants, Units, and Uncertainty . NIST . May 2024. Retrieved 2024-05-18 .
^ "2022 CODATA Value: proton g factor" . The NIST Reference on Constants, Units, and Uncertainty . NIST . May 2024. Retrieved 2024-05-18 .
^ "2022 CODATA Value: quantum of circulation" . The NIST Reference on Constants, Units, and Uncertainty . NIST . May 2024. Retrieved 2024-05-18 .
^ "2022 CODATA Value: Bohr magneton" . The NIST Reference on Constants, Units, and Uncertainty . NIST . May 2024. Retrieved 2024-05-18 .
^ "2022 CODATA Value: nuclear magneton" . The NIST Reference on Constants, Units, and Uncertainty . NIST . May 2024. Retrieved 2024-05-18 .
^ "2022 CODATA Value: classical electron radius" . The NIST Reference on Constants, Units, and Uncertainty . NIST . May 2024. Retrieved 2024-05-18 .
^ "2022 CODATA Value: Thomson cross section" . The NIST Reference on Constants, Units, and Uncertainty . NIST . May 2024. Retrieved 2024-05-18 .
^ "2022 CODATA Value: Bohr radius" . The NIST Reference on Constants, Units, and Uncertainty . NIST . May 2024. Retrieved 2024-05-18 .
^ "2022 CODATA Value: Rydberg constant" . The NIST Reference on Constants, Units, and Uncertainty . NIST . May 2024. Retrieved 2024-05-18 .
^ "2022 CODATA Value: Rydberg constant times hc in J" . The NIST Reference on Constants, Units, and Uncertainty . NIST . May 2024. Retrieved 2024-05-18 .
^ "2022 CODATA Value: Hartree energy" . The NIST Reference on Constants, Units, and Uncertainty . NIST . May 2024. Retrieved 2024-05-18 .
^ "2022 CODATA Value: Fermi coupling constant" . The NIST Reference on Constants, Units, and Uncertainty . NIST . May 2024. Retrieved 2024-05-18 .
^ "2022 CODATA Value: Avogadro constant" . The NIST Reference on Constants, Units, and Uncertainty . NIST . May 2024. Retrieved 2024-05-18 .
^ "2022 CODATA Value: molar gas constant" . The NIST Reference on Constants, Units, and Uncertainty . NIST . May 2024. Retrieved 2024-05-18 .
^ "2022 CODATA Value: Faraday constant" . The NIST Reference on Constants, Units, and Uncertainty . NIST . May 2024. Retrieved 2024-05-18 .
^ "2022 CODATA Value: molar Planck constant" . The NIST Reference on Constants, Units, and Uncertainty . NIST . May 2024. Retrieved 2024-05-18 .
^ "2022 CODATA Value: molar mass of carbon-12" . The NIST Reference on Constants, Units, and Uncertainty . NIST . May 2024. Retrieved 2024-05-18 .
^ "2022 CODATA Value: atomic mass constant" . The NIST Reference on Constants, Units, and Uncertainty . NIST . May 2024. Retrieved 2024-05-18 .
^ "2022 CODATA Value: molar mass constant" . The NIST Reference on Constants, Units, and Uncertainty . NIST . May 2024. Retrieved 2024-05-18 .
^ "2022 CODATA Value: molar volume of silicon" . The NIST Reference on Constants, Units, and Uncertainty . NIST . May 2024. Retrieved 2024-05-18 .
^ "2022 CODATA Value: hyperfine transition frequency of Cs-133" . The NIST Reference on Constants, Units, and Uncertainty . NIST . May 2024. Retrieved 2024-05-18 .