Minerotrophic refers to environments that receive nutrients primarily through groundwater that flows through mineral-rich soils or rock,[1] or surface water flowing over land.[2] Minerotrophic, “minerogenous”, and “geogenous” are now often used interchangeably, although the latter two terms refer primarily to hydrological systems, while the former refers to nutrient dynamics.[3] The hydrologic process behind minerotrophic wetlands results in water that has acquired dissolved chemicals which raise the nutrient levels and reduce the acidity.[3] This in turn affects vegetation assemblages and diversity in the wetland in question.[4] If dissolved chemicals include chemical bases such as calcium or magnesiumions, the water is referred to as base-rich and is neutral or alkaline.[3] In contrast to minerotrophic environments, ombrotrophic environments get their water mainly from precipitation, and so are very low in nutrients and more acidic.[5] Of the various wetland types, fens and rich fens are often minerotrophic while poor fens and bogs are often ombrotrophic.[1]Marshes and swamps may also be fed through groundwater sources to a degree.[6]
Hydrology
The hydrological setting of a wetland strongly influences its characteristics.[4] Chemical ions are transported to wetlands via their hydrological system, and in turn affect pH, conductivity, and nutrient levels.[7] Chemical and nutrient dynamics may differ depending on a minerotrophic wetland’s hydrological setting, which could include water discharge dominated, recharge dominated, or some combination of both.[4] These characteristics also vary seasonally, as average groundwater levels increase and decrease at different times of the year.[8] This seasonality can raise water below ground or above the surface to become free standing.[9] Additional factors such as geological conditions, soil type, and surface morphology may also influence the characteristics of a wetland in tandem with hydrological setting.[4]
Vegetation communities
Stable water and nutrient availability via groundwater systems allows for a diverse array of plant species to grow in minerotrophic wetlands.[4] This also allows for peat to accumulate provided the water does not flow too quickly.[4] A minerotrophic wetland may be alkaline or weakly acidic, which also influences vegetation communities.[6] Rich fens are often characterized by alkaline hydrologic conditions, allowing for more plant diversity.[6] These areas may be dominated by brown mosses of the family Amblystegiaceae and sedges in the genus Carex.[6] Acidic poor fens are often dominated by peat mosses of the genus Sphagnum which tend to further increase acidity.[6]
Examples
A notable example of a minerotrophic wetland is the Everglades, a large subtropical wetland located in Western Florida, USA.[10]