Neurolysin, mitochondrial is a protein that in humans is encoded by the NLNgene.[5][6] It is a 78-kDa enzyme, widely distributed in mammalian tissues and found in various subcellular locations that vary with cell type.[7] Neurolysin exemplifies the ability of neuropeptidases to target various cleavage site sequences by hydrolyzing them in vitro,[8][9] and metabolism of neurotensin is the most important role of neurolysin in vivo.[10] Neurolysin has also been implicated in pain control,[11][12][13] blood pressure regulation,[14][15]sepsis,[16]reproduction,[17][18]cancer biology[19] pathogenesis of stroke,[20] and glucose metabolism.[21]
Structure
Gene
The NLN gene lies on the chromosome location of 5q12.3 and consists of 14 exons.
Protein
Neurolysin, with 704 amino acid residues, is a zincmetalloendopeptidase with a conserved HEXXH motif. It has an overall prolate ellipsoid shape, with a deep narrow channel dividing it into two roughly equal domains.[22] The catalytic site is contained within a thermolysin-like region found in many metallopeptidases and located in the domain near the floor of the channel.[10][23]
Function
Neurolysin hydrolyzes only peptides containing 5-17 amino acids by cleaving at a limited set of sites.[22][24][25] The specificity of neurolysin for small bioactive peptides is due to the presence of large structural elements erected over its active site region that allow substrates access only through a deep narrow channel.[26] In vitro, neurolysin exemplifies the ability of some neuropeptidases to target diverse cleavage site sequences.[8][9] In vivo, their most established role is cleaving neurotensin between its 10th and 11th residues to produce inactive fragments and it has been recently identified as a non-AT1-non-AT2 angiotensin-binding site, with function pertaining to the rennin-angiotensin system.[10][27][28] Neurotensin is involved in many processes including mast celldegranulation and regulation of central nervous systemdopaminergic and cholinergic circuits.[29][30][31] A lower level of neurotensin is associated with schizophrenia,[32] and it is implicated in cardiovascular disorders, addiction, Huntington disease and Parkinson disease.[30][33][34][35] Neurotensin is also one of the most potent blockers of pain perception.[36]
Clinical significance
Metabolism of neurotensin is the most important role of neurolysin in vivo and has been identified as a non-AT1-non-AT2 angiotensin-binding site.[10][27][28] Neurotensin is involved in many processes including mast cell degranullation and regulation of central nervous system dopaminergic and cholinergic circuits.[29][30][31] Neurolysin has also been implicated in pain control,[11][12][13] blood pressure regulation,[14][15] sepsis,[16] reproduction,[17][18] cancer biology,[19] pathogenesis of stroke,[20] and glucose metabolism.[21] Inhibition of neurolysin has been shown to produce neurotensin-induced analgesia in mice,[37] and control of neurotensin levels by neurolysin may serve as a potential target for antipsychotic therapies.
^Barrett AJ, Brown MA, Dando PM, Knight CG, McKie N, Rawlings ND, Serizawa A (1995). "Thimet oligopeptidase and oligopeptidase M or neurolysin". Proteolytic Enzymes: Aspartic and Metallo Peptidases. Methods in Enzymology. Vol. 248. pp. 529–56. doi:10.1016/0076-6879(95)48034-x. ISBN9780121821494. PMID7674943.
^ abOliveira V, Campos M, Hemerly JP, Ferro ES, Camargo AC, Juliano MA, Juliano L (May 2001). "Selective neurotensin-derived internally quenched fluorogenic substrates for neurolysin (EC 3.4.24.16): comparison with thimet oligopeptidase (EC 3.4.24.15) and neprilysin (EC 3.4.24.11)". Analytical Biochemistry. 292 (2): 257–65. doi:10.1006/abio.2001.5083. PMID11355859.
^ abRioli V, Kato A, Portaro FC, Cury GK, te Kaat K, Vincent B, Checler F, Camargo AC, Glucksman MJ, Roberts JL, Hirose S, Ferro ES (September 1998). "Neuropeptide specificity and inhibition of recombinant isoforms of the endopeptidase 3.4.24.16 family: comparison with the related recombinant endopeptidase 3.4.24.15". Biochemical and Biophysical Research Communications. 250 (1): 5–11. doi:10.1006/bbrc.1998.8941. PMID9735321.
^ abJeske NA, Berg KA, Cousins JC, Ferro ES, Clarke WP, Glucksman MJ, Roberts JL (April 2006). "Modulation of bradykinin signaling by EP24.15 and EP24.16 in cultured trigeminal ganglia". Journal of Neurochemistry. 97 (1): 13–21. doi:10.1111/j.1471-4159.2006.03706.x. PMID16515556. S2CID24664221.
^ abDoulut S, Dubuc I, Rodriguez M, Vecchini F, Fulcrand H, Barelli H, Checler F, Bourdel E, Aumelas A, Lallement JC (May 1993). "Synthesis and analgesic effects of N-[3-[(hydroxyamino) carbonyl]-1-oxo-2(R)-benzylpropyl]-L-isoleucyl-L-leucine, a new potent inhibitor of multiple neurotensin/neuromedin N degrading enzymes". Journal of Medicinal Chemistry. 36 (10): 1369–79. doi:10.1021/jm00062a009. PMID8496905.
^ abOliveira EB, Souza LL, Sivieri DO, Bispo-da-Silva LB, Pereira HJ, Costa-Neto CM, Sousa MV, Salgado MC (December 2007). "Carboxypeptidase B and other kininases of the rat coronary and mesenteric arterial bed perfusates". American Journal of Physiology. Heart and Circulatory Physiology. 293 (6): H3550-7. doi:10.1152/ajpheart.00784.2007. PMID17906107. S2CID23115730.
^ abBlais PA, Côté J, Morin J, Larouche A, Gendron G, Fortier A, Regoli D, Neugebauer W, Gobeil F (August 2005). "Hypotensive effects of hemopressin and bradykinin in rabbits, rats and mice. A comparative study". Peptides. 26 (8): 1317–22. doi:10.1016/j.peptides.2005.03.026. PMID16042973. S2CID36463460.
^ abDauch P, Masuo Y, Vincent JP, Checler F (November 1992). "Endopeptidase 24-16 in murines: tissue distribution, cerebral regionalization, and ontogeny". Journal of Neurochemistry. 59 (5): 1862–7. doi:10.1111/j.1471-4159.1992.tb11021.x. PMID1402928. S2CID41539518.
^Yanagihara N, Toyohira Y, Yamamoto H, Ohta Y, Tsutsui M, Miyamoto E, Izumi F (September 1994). "Occurrence and activation of Ca2+/calmodulin-dependent protein kinase II and its endogenous substrates in bovine adrenal medullary cells". Molecular Pharmacology. 46 (3): 423–30. PMID7935321.
^ abAlexacos N, Pang X, Boucher W, Cochrane DE, Sant GR, Theoharides TC (May 1999). "Neurotensin mediates rat bladder mast cell degranulation triggered by acute psychological stress". Urology. 53 (5): 1035–40. doi:10.1016/s0090-4295(98)00627-x. PMID10223502.
^ abcRostène W, Brouard A, Dana C, Masuo Y, Agid F, Vial M, Lhiaubet AM, Pelaprat D (1992). "Interaction between neurotensin and dopamine in the brain. Morphofunctional and clinical evidence". Annals of the New York Academy of Sciences. 668: 217–31. doi:10.1111/j.1749-6632.1992.tb27352.x. PMID1361114. S2CID41673524.
^ abMargeta-Mitrovic M, Grigg JJ, Koyano K, Nakajima Y, Nakajima S (September 1997). "Neurotensin and substance P inhibit low- and high-voltage-activated Ca2+ channels in cultured newborn rat nucleus basalis neurons". Journal of Neurophysiology. 78 (3): 1341–52. doi:10.1152/jn.1997.78.3.1341. PMID9310425.
^Sharma RP, Janicak PG, Bissette G, Nemeroff CB (July 1997). "CSF neurotensin concentrations and antipsychotic treatment in schizophrenia and schizoaffective disorder". The American Journal of Psychiatry. 154 (7): 1019–21. doi:10.1176/ajp.154.7.1019. PMID9210757.
^Ertl G, Bauer B, Becker HH, Rose G (April 1993). "Effects of neurotensin and neuropeptide Y on coronary circulation and myocardial function in dogs". The American Journal of Physiology. 264 (4 Pt 2): H1062-8. doi:10.1152/ajpheart.1993.264.4.H1062. PMID8476083.
^Pang X, Alexacos N, Letourneau R, Seretakis D, Gao W, Boucher W, Cochrane DE, Theoharides TC (October 1998). "A neurotensin receptor antagonist inhibits acute immobilization stress-induced cardiac mast cell degranulation, a corticotropin-releasing hormone-dependent process". The Journal of Pharmacology and Experimental Therapeutics. 287 (1): 307–14. PMID9765351.
^Fredrickson P, Boules M, Lin SC, Richelson E (September 2005). "Neurobiologic basis of nicotine addiction and psychostimulant abuse: a role for neurotensin?". The Psychiatric Clinics of North America. 28 (3): 737–51, 746. doi:10.1016/j.psc.2005.05.001. PMID16122577.
^Luttinger D, Nemeroff CB, Prange AJ (April 1982). "The effects of neuropeptides on discrete-trial conditioned avoidance responding". Brain Research. 237 (1): 183–92. doi:10.1016/0006-8993(82)90566-2. PMID6176291. S2CID20135629.
Vincent B, Vincent JP, Checler F (February 1996). "Purification and characterization of human endopeptidase 3.4.24.16. Comparison with the porcine counterpart indicates a unique cleavage site on neurotensin". Brain Research. 709 (1): 51–8. doi:10.1016/0006-8993(95)01260-5. PMID8869556. S2CID24776559.
Krause DR, Piva TJ, Brown SB, Ellem KA (September 1997). "Characterization and localization of mitochondrial oligopeptidase (MOP) (EC 3.4.24.16) activity in the human cervical adenocarcinoma cell line HeLa". Journal of Cellular Biochemistry. 66 (3): 297–308. doi:10.1002/(SICI)1097-4644(19970901)66:3<297::AID-JCB3>3.0.CO;2-K. PMID9257187. S2CID6428712.
Rioli V, Kato A, Portaro FC, Cury GK, te Kaat K, Vincent B, Checler F, Camargo AC, Glucksman MJ, Roberts JL, Hirose S, Ferro ES (September 1998). "Neuropeptide specificity and inhibition of recombinant isoforms of the endopeptidase 3.4.24.16 family: comparison with the related recombinant endopeptidase 3.4.24.15". Biochemical and Biophysical Research Communications. 250 (1): 5–11. doi:10.1006/bbrc.1998.8941. PMID9735321.
Garrido PA, Vandenbulcke F, Ramjaun AR, Vincent B, Checler F, Ferro E, Beaudet A (April 1999). "Confocal microscopy reveals thimet oligopeptidase (EC 3.4.24.15) and neurolysin (EC 3.4.24.16) in the classical secretory pathway". DNA and Cell Biology. 18 (4): 323–31. doi:10.1089/104454999315385. PMID10235115.
Lew RA, Boulos E, Stewart KM, Perlmutter P, Harte MF, Bond S, Aguilar MI, Smith AI (September 2000). "Bradykinin analogues with beta-amino acid substitutions reveal subtle differences in substrate specificity between the endopeptidases EC 3.4.24.15 and EC 3.4.24.16". Journal of Peptide Science. 6 (9): 440–5. doi:10.1002/1099-1387(200009)6:9<440::AID-PSC280>3.0.CO;2-K. PMID11016880. S2CID21167268.
Norman MU, Lew RA, Smith AI, Hickey MJ (June 2003). "Metalloendopeptidases EC 3.4.24.15/16 regulate bradykinin activity in the cerebral microvasculature". American Journal of Physiology. Heart and Circulatory Physiology. 284 (6): H1942-8. doi:10.1152/ajpheart.00948.2002. PMID12586639. S2CID27696550.
Norman MU, Reeve SB, Dive V, Smith AI, Lew RA (June 2003). "Endopeptidases 3.4.24.15 and 24.16 in endothelial cells: potential role in vasoactive peptide metabolism". American Journal of Physiology. Heart and Circulatory Physiology. 284 (6): H1978-84. doi:10.1152/ajpheart.01116.2002. PMID12609826.